A Dynamic-induced Direct-shear Model for Dynamic Triggering of Frictional Slip on Simulated Granular Gouges

نویسندگان

  • W. Wu
  • J. Zhao
چکیده

This study presents a dynamic-induced direct-shear model to investigate the dynamic triggering of frictional slip on simulated granular gouges. An incident P-wave is generated as a shear load and a normal stress is constantly applied on the gouge layer. The shear stress accumulates in the incident stage and the frictional slip occurs in the slip stage without the effect of the reflected wave. The experimental results show a non-uniform shear stress distribution along the gouge layer, which may be induced by a shear load induced torque and by normal stress vibration along the layer. The shear stress at the trailing edge strongly affects the frictional slip along the P-wave loading direction, while the rebound stress at the leading edge propagates along the opposite direction. The frictional slip is triggered when the maximum shear stress at the trailing edge reaches a critical value. The normal stress influences the maximum shear stress at the trailing edge, the maximum slip displacement and the slip velocity. The advantages and the limitations of this model are discussed at the end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An unload-induced direct-shear model for granular gouge friction in rock discontinuities.

The experimental study introduces an unload-induced direct-shear model to investigate the frictional slip of a layer of simulated granular gouges induced by the combination of a decreasing normal stress and a constant shear stress. A frictional equilibrium state of the gouge layer is initially established under fixed normal and shear stresses. The normal stress is proposed to decrease at a cons...

متن کامل

Potential for earthquake triggering from transient deformations

[1] We report on laboratory experiments in which stick-slipping shear surfaces are subject to transient stressing to simulate earthquake triggering by seismic waves. Granular layers and bare granite surfaces were sheared in a servo-controlled deformation apparatus in double-direct shear. The seismic waves from an earthquake and tectonic load were simulated by superimposing a loading rate sinuso...

متن کامل

Laboratory observation of acoustic fluidization in granular fault gouge and implications for dynamic weakening of earthquake faults

[1] Several lines of evidence, including remote triggering of earthquakes and modulation of seismic tremor by Earth tides, suggest that faults weakenwhen subject to shaking and dynamic stresses associatedwith the passage of seismic waves. However, the origin of such dynamic weakening is poorly understood. Here we explore the role of acoustic resonance for dynamic fault weakening using laborator...

متن کامل

Nonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to Earth

[1] Among the most fascinating, recent discoveries in seismology are the phenomena of dynamically triggered fault slip, including earthquakes, tremor, slow and silent slip—during which little seismic energy is radiated—and low frequency earthquakes. Dynamic triggering refers to the initiation of fault slip by a transient deformation perturbation, most often in the form of passing seismic waves....

متن کامل

Granular friction: Triggering large events with small vibrations

Triggering large-scale motion by imposing vibrations to a system can be encountered in many situations, from daily-life shaking of saltcellar to silo unclogging or dynamic earthquakes triggering. In the well-known situation of solid or granular friction, the acceleration of imposed vibrations has often been proposed as the governing parameter for the transition between stick-slip motion and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014